Trading Memory for Disk Using Parallel Access to Fast InfiniBand Disk
Arrays for Large Computational Chemistry Applications

Kyle Schochenmaier, Troy Benjegerdes and Brett Bode
Ames Laboratory, U.S. DOE
Iowa State University
Scalable Computing Laboratory
Ames, Iowa, 50011
Email: {kschoche, troy, brett} @scl.ameslab.gov

1 Abstract

We present a novel approach for using high per-
formance network attached parallel storage for out-of-
core computation. Our approach utilizes many paral-
lel disks and storage controllers with a near 1:1 ratio
of compute nodes to storage servers. This, when com-
bined with 30 Gigabit 12X InfiniBand interconnects,
allows remote storage subsystem bandwidth to reach
the same performance level as local memory-cache file
I/O performance. This combination allows computa-
tional chemistry application problem sizes which re-
quire more than 100GB of intermediate data to store
this data on disk without the disk I/O subsystem be-
coming the limiting factor. With sequential storage ac-
cess speeds on the same order of magnitude as main
memory performance, this allows out-of- core compu-
tation to become practical due to disk storage being
several orders of magnitude cheaper per GB than main
memory storage.

2 Problem Statement

Computational Chemistry packages such as the
General Atomic and Molecular Electronic Structure
System (GAMESS) [?, ?] can generate very large
amounts of intermediate data that can either be stored
or recomputed as needed. Some of these algorithms
have been designed with both direct (recomputation of
integrals) and conventional (integrals computed once,
stored and reused) modes. Conventional methods re-
quire far fewer computations, but can require multi-
gigabyte data files. In the past conventional methods
were used quite frequently, but increases in CPU speed
have outpaced increases in IO bandwidth significantly.

In addition, the industry trend to large numbers of light
weight nodes with often no local secondary storage has
led to more emphasis on direct methods. However,
some of the most accurate methods are not currently
available in a parallel implementation and often are
the most resource intensive types of runs. These cal-
culations are usually substantially I/O bound. Thus, to
support these types of calculations we need to be able
to provide secondary storage at the highest possible
bandwidth to nodes within our cluster.

From a management perspective we want to be able
to centralize the storage and deliver it precisely to the
nodes that need it. Centralized storage allows flex-
ibility to the system scheduler and makes it easier
to manage the failure prone disk subsystems. In or-
der to make this practical we need to be able to de-
liver bandwidth to secondary storage that matches or
exceeds that available from typically locally attached
storage systems on a cluster. We feel that a target
of 150MB/second is reasonable. In order to achieve
this target we plan to utilize multiple high-speed stor-
age InfiniBand attached storage servers with a virtual
file system to make them appear as one storage tar-
get to the compute node clients. With this setup hope
to support I/O rates that can keep processor utilization
at greater than 90% and achieve sustained sequential
disk read rates of 50% of the aggregate raw disk spin-
dle read performance.

3 Configuration
3.1 Hardware Configuration

Our hardware configuration consists of a set of
high-performance, low-cost Opteron based storage

1BM IBM 4x
12x
MEHCA 4x SDR eHCA SDR eHCA

= —— YCELLTTLLIID 1
X Mellanox (24) 4x DDR ports
mtHCA 4x DDR mtHCA 4x DDR

Figure 1. Hardware Configuration

servers and a set of IBM OpenPower Power5 based
servers as the clients utilizing InfiniBand for the inter-
connect as shown in Figure 1. The storage component
is provided by six dual AMD Opteron based servers.
Each server is configured with 4GB of RAM, two PCI-
X based Areca 8-port SATA RAID controllers and 16
Seagate 250GB SATA disks configured in two hard-
ware RAIDS arrays that are then combined into a sin-
gle RAIDO array in software. The network for the stor-
age servers is provided by a Mellanox 8x PCI-express
based 4X Double Data Rate (DDR) InfiniBand provid-
ing a peak data payload of 16Gbps. The clients are a
set of ten IBM quad-Power5 OpenPower 720 servers
configured with 8 or 16 GB of RAM and a GX pro-
cessor bus attached IBM 12X Single Data Rate (SDR)
Galaxy InfiniBand adapter. In addition, two clients
were configured with 4X SDR PCI-X based Mellanox
InfiniBand adapters. This setup allows us to test clients
running at peak data payloads of 8 Gbps, 16 Gbps, and
24 Gbps and allows varying the server count from 1
to six and the client count from 1 to 10. The nodes
and servers are distributed between two 24 4X DDR
port Mellanox switches. The switches are connected
to each other via a 12X DDR link providing up to
48Gbps of switch to switch bandwidth. For the pur-
poses of this work this should provide an effectively
flat network without switch imposed bandwidth limi-
tations.

3.2 Data and Storage Layout

Utilizing PVFS2 the data storage on the Opteron
based servers was combined into sets of 1, 2, 4 and
6 servers. In each case data is automatically striped
across the number of servers in the virtual file system.
The stripe size was also examined.

4 Software

Our software core is based on the latest develop-
ment version of PVFS2 running on AMD64 and Pow-
erPC64 based Debian Linux. To quantify our perfor-
mance we have used a new version of NetPIPE and the
GAMESS quantum chemistry application. To further
validate these results we have checked them against
the output of the vmstat linux command.

4.1 PVFS2

The core piece of software for our test setup is the
Parallel Virtual File System 2 (PVFS2) [?]. PVFS2
is designed to stripe data storage across multiple in-
dependent servers while providing the appearance of
a single unified file system to the clients. It has been
demonstrated to have quite good scalability in the past
with large numbers of clients and servers. However,
the performance to an individual client has been less of
a focus, in part because the network connection speeds
have imposed an upper limit of about 100MB/sec on
a network file system. With the arrival of InfiniBand
in the past few years the network capability has been
increased from 1-2 Gbps to 8 and now 16-24 Gbps.
Achieving that level of performance requires the di-
rect use of the native verbs interface. Thus, we have
been assisting in the development of an OpenlB [?] na-
tive message layer for PVFS2. While an initial version
of this work was released in the version 1.5 release
of PVFS2 work is still ongoing and significant perfor-
mance improvements were made during the course of
this effort. PVFS2 provides up to three different ap-
plication interfaces. The simplest is provided through
a kernel extension and client process that provides a
normal file system interface to applications. The sec-
ond option is through the use of MPI-1IO and the third
is through direct calls to the PVFS2 user land library.
The normal file system interface is obviously the sim-
plest for applications to use, but potentially imposes
additional overhead and limits the ability of the ap-
plication to tune various IO related parameters. The
native libpvfs2 usage is the most invasive, but allows
the most tuning. Thus, for our tests we have chosen to
test a native libpvfs2 implementation and a normal file
system implementation.

4.2 NetPIPE

The Network Protocol Independent Performance
Evaluator, or NetPIPE, is a utility originally designed
to produce a more extensive analysis of interconnect
related communication performance at the MPI and
TCP layers [?]. It has since been developed to in-
clude support for other message-passing libraries, in
addition to native software layers such as OpenlB. It
is organized into a central program which provides an
identical testing environment for each supported im-
plementation over modularized interfaces.

In most cases, NetPIPE measures the interconnect
or message-passing latencies and bandwidths via a
synchronized, 2-sided communications system. The
system utilizes a ping-pong style measurement across
different ranges of message sizes, while each mes-
sage size is repeated over a number of iterations and
a worst-case analysis of the system is produced [?].

A NetPIPE [?] module has been recently developed
specifically for testing the performance characteristics
of file systems and the PVFS2 software stack. This in-
cludes methods by which the throughput of the PVFS2
file system implemented over the OpenlB interface can
be analyzed through both native calls and the use of
the VFS layer, as well its performance when accessing
local disk via unix read () and write () APIs.

The PVFS2-NetPIPE module was developed
specifically to address the need to examine the
performance characteristics of a parallel file system
implemented via a system of high-performance data
servers capable of saturating the interconnect with
raw disk I/O. Since the primary goal of the imple-
mentation is to provide each client with a maximum
sustained bandwidth to secondary storage rather than
an optimal aggregate bandwidth over many clients,
the benchmark was designed to demonstrate the
ability of a single client to achieve large sustained data
throughput directly to disks.

The NetPIPE module was developed against the
current NetPIPE-3.6 and PVFS2-1.5.1 releases, and
utilizes PVFS2 function calls from libpvfs to directly
interface with a remote PVES2 file system. These in-
ternal calls reside in the PVFS2 layer, above the BMI
interface, which allows the NetPIPE module to be used
with any BMI-supported interconnect. The connec-
tion to the PVFS2 file system is done in the Setup

and Init functions of the program, also implemented
in these functions are various PVFS2-side file checks
necessary to ensure files are not overwritten. The
Send and Recv functions provide the data transfer
mechanisms to and from the data servers.

During a write test, a new file is created and opened
remotely on the PVFS2 data servers for writing. For
a read test, an existing file created by a previous Net-
PIPE write test (or any other sufficiently sized exist-
ing file) is opened for read-only tests. Once the file is
opened, NetPIPE will manage local buffers and mem-
ory segments aligned to the current message size, and
read or write the contents from or to the open files.
When using cache invalidate mode, after each send or
receive, file pointers are moved forward to the next 4k
aligned file offset, causing a seek, and reducing the
possibility that data is being cached on the servers.
This does little when the message sizes are very small,
however typical tests produce files greatly in excess
of system memory size. After the tests have com-
pleted, all files that were opened via the PVFS2 in-
terface are closed and finalized via the internal PVFS2
PVFS_finalize function.

The NetPIPE disk I/O module is substantially sim-
iliar to the PVFS2 client module, and the file is opened
in the NetPIPE module Setup function. During read
and write tests, the only substantial difference between
the PVFS and Disk modules is that the return value of
the unix read function must be checked to ensure that
all the data has been read in case of an interrupted sys-
tem call.

4.3 GAMESS

As mentioned previously GAMESS is a large quan-
tum chemistry package that encompasses many differ-
ent algorithms and code paths. For the purposes of this
work we have chosen to utilize one of the more ba-
sic algorithms, the Hartree- Fock energy calculation.
This type of calculation is the base computation re-
quired for many of the higher level methods in quan-
tum chemistry and is thus very important and widely
used. GAMESS offers both a direct and conventional
version of the algorithm. In the conventional algorithm
the primary disk usage is for the storage of the set of
four center two electron integrals. These integrals are
precomputed and written to disk once and read in a

number of times while molecular wavefunction is op-
timized in an iterative fashion. This algorithm tends to
be quite IO bound in both the read and write phases,
though because the data is read many more times than
it is written the read performance is more important.
GAMESS includes timing information for many of the
individual steps, but due to the overlap of I/O and com-
putation the rates computed from these timings repre-
sent a lower bound on the I/O performance.

While GAMESS normally uses the standard FOR-
TRAN I/O interfaces we also wanted to be able to test
the native PVFS2 system. Thus, a shim layer was de-
veloped that passes I/O from GAMESS to the native
PVFS2 interfaces. The shim layer also allows us to
tune the I/O buffer size passed to the file system or
PVFS?2 library as well the PVFS2 stripe size.

For our test runs two sets of input were chosen. The
first is the insecticide rotenone, Co30¢Hoo, With a 6-
31G* basis set or 479 atomic orbitals (AOs). This run
results in a 17.1 GB integral file. This file size will fit
in the file cache when run with 6 data servers and thus
allows us to evaluate the performance of the network
and PVFS2 software separately from the disk perfor-
mance. The second test case uses the anticancer drug
taxol, C47014N1 Hs1, with a 6-31G* basis set or 1032
AOs. This produces a 120GB file that is clearly sev-
eral times our aggregate file cache size. Using these
test cases we hope to validate the NetPIPE results by
relating real application performance to specific points
on the NetPIPE curves.

5 Solution

Our solution to the problem combines InfiniBand
network attached storage, the PVFS?2 file system, and
the GAMESS computational chemistry application.
By building a system with these components with
many more disks than processors we can support I[/O
rates to a single node exceeding 10 Gigabits. Deliver-
ing this I/O rate in turn allows for building a system
that can support conventional, secondary storage for
scratch space, types of algorithms without locally at-
tached disks and their accompanying problems.

12000

e DbR mthca nétiv%f
eHCA native IB t
10000 /
2 N\
& 8000 \
s
S
£ 6000 \
b}
; /
=]
& 4000
[81]
2000 -
/ Vi
=
0
1000 10000 100000 1e+06 1e+07

Message Size in Bytes

Figure 2. Native OpenlIB verbs performance

6 Experiments

We began our experiments by establishing the base
level of performance for the network and the disk sub-
systems on the Opteron based storage servers. This
was done using NetPIPE to measure the native OpenlB
verbs performance on the IBM eHCAs and on the
Opteron based storage servers. Those results are plot-
ted in Figure 2. The curve for the Mellanox DDR NIC
in the Opteron systems appears much as we would ex-
pect with a respectable peak performance of around
11 Gbps. However, the curve for the IBM eHCA is
much less impressive. At small message sizes on reg-
ular block sizes the performance is quite good as a
result of its excellent message latency, but the peak
performance is only slightly over 6 Gbps. After dis-
cussing this with the developers the reason is that this
adapter is really designed for many simultaneous mes-
sage streams. As such it has multiple DMA engines
on the card, but a single message stream can use only
a single DMA engine which is limited to about 6 Gbps.
While this result appears quite bad, it turns out not to
be a serious issue for PVFS2 when we are normally
talking to multiple storage servers. Since PVFS2 must
use at least one message stream per storage server the
multiple DMA engines in the eHCA engine are used
in parallel to good effect as we shall see later.

Next we examined the local disk performance on
our Opteron storage servers. We found a peak per-
formance of about 3.5 Gbps (435MB/sec) per server.
This is somewhat less than we had hoped for, but still
a good rate in aggregate as the 6 servers would be able
to provide 2.6 GB/sec of total I/O bandwidth.

8000

—— VFS Write 6-node
VFS Read 6-node
------------ VFS Write 4-node
VFS Read 4-node

7000

6000

5000

4000

3000

Bandwidth in Mbps

2000

1000

o

0
10000 100000 1e+06 1le+07 1e+08
Message Size in Bytes

Figure 3. PVFS2 VFS performance

The first PVFS2 tests examined the VFS perfor-
mance. These results are plotted in Figure 3 showing
the performance for 4 and 6 storage server configura-
tions. These tests allow the servers to utilize file cache
so they represent a test of the network and software
performance. For validation the smaller GAMESS
computation averaged 181 MB/s over the total run
time of the job on 1 CPU and 336 MB/s on 4 CPUs.
If we subtract off the CPU time and recompute the I/O
rate we get of 447 MB/sec (3.5 Gbps) on one CPU and
473 MB/sec (3.75 Gbps) on four CPU run, both within
a single node. This gives fairly good agreement with
the peak NetPIPE numbers.

Figure 4 illustrates the same runs using the native
PVFS2 interfaces. These show a doubling of peak per-
formance, but not until a fairly large message size. Us-
ing GAMESS as a comparison is more difficult in this
case because we can not easily separate out the CPU
time used by the computation and the CPU time used
for polling on I/0O. However, we can compare total
wall times which went from 1344 seconds over VFS
to 850 seconds native. The minimum performance is
288 MB/sec (2.3 Gbps), but in comparison with Net-
PIPE and previous GAMESS results we estimate that
it is closer to the NetPIPE peak performance around
1.1 GB/sec (9 Gbps).

Figure 5 shows NetPIPE running in cache invalidate
mode. Cache invalidate mode causes seeks inside the
file at every iteration of a send/recv call. This is shown
most effectively when we begin seeking outside of the
data that remains in system cache on any given data
node, which occurs beyond 2MBs for the number of
iterations done in this test. This type of test shows how

— ‘Iibpvfs Read 6-node

10000 libpvfs Read 4-node ‘
------------ libpvfs Read 2-node

Y
//

Bandwidth in Mbps

4000

2000 // &

e

0
1000 10000 100000 1e+06 1le+07 1e+08
Message Size in Bytes

Figure 4. PVFS2 native performance

—— libpvfs Read with Invalidate ‘
10000 ~ libpvfs Write with Invalidate

8000 /
6000 /A\ .
4000

Bandwidth in Mbps

2000 //

—

0
1000 10000 100000 1e+06 1le+07 1e+08
Message Size in Bytes

Figure 5. NetPIPE in cache invalidate mode

— ‘Iibpvfs Read from cache }
10000 libpvfs Read from disk S

8000 //
6000 / T4/

¥

I
4000

Bandwidth in Mbps

2000

—

0 ,
1000 10000 100000 1e+06 1e+07 1e+08
Message Size in Bytes

Figure 6. Comparison of read performance

with and without cache invalidate

a GAMESS job would access storage while reading an
integral of potentially several hundred gigabytes.

The lines in Figure 5 help show the effects of
caching in various places between the client and the
disk subsystem. An important thing to note is that as
the message size increases, the read bandwidth is still
increasing and has yet to level off. This may imply that
we have not reached a bandwidth limitation imposed
by the disk subsystem for reads. We were unable to
examine this due to limitations with registering mem-
ory on the eHCAs. We do however know that we have
yet to reach the limits measured for the disk subsys-
tems.

As the test show, the effects of caching tail off when
the test file size becomes large. The test file used
to produce this graph was over 400GB which helped
eliminate caching effects beyond 50-75MB message
sizes. The write line shows our expected bandwidth
directly to disk of about 3.5Gbit/sec with little to no
caching effects due to the fact that the test file is
many times the aggregate file cache size of the stor-
age servers.

Figure 6 compares the measured NetPIPE read per-
formance with and without cache invalidate. Thus, this
is a comparison of PVFS2 performance from storage
server file cache versus all the way to the disk. Clearly
the performance from disk is quite close to the perfor-
mance from cache with the addition of a little higher
latency. This indicates that our peak performance is
being limited more by the network and PVFS2 proto-
cols than by the performance of the disk subsystems.

Figure 7 illustrates the sustained aggregate read per-
formance as reported by vmstat on the storage servers.
As such it is more reliable than the results for the
smaller test case. Tests are included for runs with the
VES interface for both 1 and 4 processes per node
and for the native interface with 1 process per node.
Unfortunately bugs in the eHCA driver prevented us
from running more than one native process per node.
This restriction does not effect the VFS layer because
PVFS2 currently uses a single client process to service
the client VFS layer. Thus multiple processes per node
can be used to good effect with the VFS layer. The first
item of note is that the single CPU read performance is
about 220 MB/sec (1.76 Gbps) through the VES layer.
Through the native interface we achieve 375 MB/sec
(3 Gbps), which is almost as fast as 4 CPUs running

Figure 7. Scaling of GAMESS taxol Computa-
tion

through through the VFS interface. The scaling for
the VFS interface seems to top out lower than we ex-
pect. However, the native interface appears to scale
much better and achieves 900 MB/sec (7.2 Gbps) with
1 process on each of four nodes.

6.1 Conclusions

We have demonstrated through various tests that
PVFS2 running over the OpenlB stack can be used to
deliver high-bandwidth to secondary storage to an in-
dividual node. The VFS layer delivers 220 MB/sec and
the native layer delivers 375 MB/sec from disk to a sin-
gle process. These are quite respectable I/O rates and
are well in excess of our 150 MB/sec target. However,
we recognise that there is still room for improvement.
Tests on files that fit within the file cache of the storage
servers indicate peak VFS performance of 550 MB/sec
and peak native performance of over 1 GB/sec both to
a single process.

We believe that there are several opportunites for
further performance improvements. These include
multithreading the VFS client and server processes,
the use of read ahead in the server, and the use of AIO
in the server.

7 Judging Criteria

The focus of our effort is on obtaining large I/O
bandwidths to a single node and/or a single process.

Thus, our objective for overall performance is limited
to demonstrating exceptional per node I/O bandwidth
in a framework that can be used on a distributed mem-
ory cluster to deliver that I/O bandwidth to the spe-
cific processes that require it. To that end we have
demonstrated real application read rates from disk at
375 MB/sec for a single process. This is significantly
larger than what is available today on most any cluster
system.

We also demonstrated peak read rates in excess of
1.25 GB/sec (10 Gbps) with NetPIPE (a single pro-
cess). This result is close to 50% of the aggregate lo-
cal disk performance measured on each server, which
seems quite good for a distributed file system.

PVFS2 and other parallel file systems have demon-
strated good performance and good scaling when deal-
ing with simultaneous access by large numbers of
nodes to network attached storage. However, until 10
Gbps and faster networks recently arrived in the clus-
ter arena they haven’t been an option that could com-
pete with the bandwidth of locally attached disk. The
implementation of a native PVFS2 layer for OpenlB
has changed that equation substantially. As mentioned
previously we have demonstrated PVFS2 over OpenlB
performance that exceeds not only the bandwidth of
all but the fastest disk subsystems, but also exceeds
the bandwidth available on 10 Gigabit Ethernet or 4X
single data rate InfiniBand.

Utilizing InfiniBand attached storage with PVFS2
can be an extremely effective way to deliver large
amounts of very fast scratch storage to any node in a
cluster. This flexibility along with the significant man-
agement advantages of centrally located disk subsys-
tems over locally attached disks on each node make
it an attractive solution for secondary storage on distr-
buted memory systems.

8 Proposal Deviations

The testing followed the proposal fairly closely
with the exception that we were not able to test the
native mode interface of PVFS2 as thoughly as we
had planned due to problems with the drivers for our
eHCAs. These problems limited us to running only
one native mode process per node, which did give
good results, but we feel that we could still see signifi-
cantly higher per node bandwidth with multiple CPUs

active at once.

9 Price-Performance Analysis

Our test setup can be divided into three parts, the
storage servers, the network, and the compute clients.
The storage servers are probably the most relavent
part to examine in terms of price/performance. Our
servers are about one year old and are made up of
dual processor AMD Opteron CPUs, two Areca PCI-
X RAID controllers and 16 250 GB SATA HDs. These
units cost approximately $8000 each. Today the same
money would likely buy two dual- core CPUs and PCI-
Express RAID controllers.

The Interconnect is provided for by Mellanox DDR
PCI-Express InfiniBand NICs and Mellanox unman-
aged 24 port DDR switches. While these parts were
purchased prior to full production we feel that a cost
of about $1000 per node is accurate.

The IBM Power5 servers were purchased for ap-
proximately $18,000 each. The processor bus attached
12X InfiniBand adapter is to the best of our knowl-
edge not yet publically available. However, we have
been advised of a price of approximately $2,500 each.

10 Appendices

10.1 Acknowledgements

This work was performed under the auspices of the
U.S. Department of Energy under contract W-7405-
Eng-82 at Ames Laboratory operated by the Iowa State
University of Science and Technology. Funding was
provided by the Mathematical,Information and Com-
putational Science division of the Office of Advanced
Scientific Computing Research. We would also like
to thank Brad Benton and Chet Mehta at IBM for
early access and support with the 12x IBM eHCA, and
Mellanox for early access to DDR-capable InfiniBand
HCA’s and switches.

Finally, this work would not have been possible
without the efforts of the entire PVFS2 development
team. In particular, Pete Wyckoff at OSC did much of
work on the PVFS2 port to OpenIB upon which this
work is based.

10.2 Slides For Finalist Presentation

The following pages include the slides as we expect
to present them in the public storage challenge finalists
presentation.

Cae e e — e . p—— e —— et .
4 e o R = —

- IOWA STATE
UNIVERSITY

AMES LABORATORY

Problem Statement

* Our primary application, the GAMESS quantum
chemistry app. has many code paths that are quite
I/O bound writing and especially reading large
temporary storage.

* Most HPC systems are moving towards providing
minimal locally attached secondary storage with a
corresponding meager I/0O bandwidth.

* This 1s particularly troubling as the number of
CPUs per node 1s increased.

11

Proposecl Solution

* Network interconnects have reached the point where
they can potentially deliver access to secondary
storage faster than locally attached storage
subsystems.

* This also requires scalable client/server software
capable of delivering very high bandwidth to a single
node while simultaneously scaling to large numbers
of clients.

* We have chosen to use PVFS2 on Linux clients
and servers interconnected by InfiniBand.

e i i T s e e e i | e - - e r—— e -

12

— e — i .

e = p—— -

GAMESS

* Our motivating application
* Large (750k lines) FORTRAN application

* Has many different algorithms including
both direct (~diskless) and conventional
(potentially very large temporary files).

* MPI version, but not normally used.

* Used the common Hartree-Fock energy
calculation for our tests.

e T e S et et

9

17

18

19

—— DDR mthca native 1B
eHCA native

(

\

3
Q
e}
=
£
e
=]
hel
=
°
<
<
[a1]

4Rt
!
)
% !
0y S

0
1000 10000 100000 1e+06 1e+07
Message Size in Bytes

20

Base Disk Performance

* Directly testing of the I/O performance on the
Opteron storage servers indicated a peak read
performance of 435 MB/sec. measured using
NetPIPE (a single stream). Much higher
bandwidth can be obtained with Linux AIO
approaching 600 MB/sec.

21

8000

—— VFS Write 6-node
7000 - VFS Read 6-node
. - VFS Write 4-node
VFS Read 4-node

6000

5000

4000

3000

0
Q
o)
=
£
c
£
S
2
S
=
<
m

2000

1000

0 -
10000 100000 1e+06 1e+07 1e+08
Message Size in Bytes

22

—— Tibpvfs Read 6-node
libpvfs Read 4-node
libpvfs Read 2-node

0
Q
o)
=
£
<
e
e
2
©
c
©
[a1]

/A
0

1000 10000 100000 1e+06 1e+07 1e+08
Message Size in Bytes

23

—— libpvfs Read with Invalidate _
libpvfs Write with Invalidate

0
o
o)
=
£
<
£
e
=
©
c
©
[a1]

0 "
1000 10000 100000 1e+06 1e+07 1e+08
Message Size in Bytes

24

—_— 'Iibpvfs Read from cache
libpvfs Read from disk

[%2}
[oX
e}
=
£
e
=
2
=
e
c
©
[a1]

.
/
.

/
o‘--
¢(‘

0
1000 10000 100000 1e+06 1e+07 1e+08
Message Size in Bytes

25

~~
0
0
&
~N
]
=
N
o
]
o
©
3
[

——VFS 1CPU/Node
—#-VFS 4 CPU/Node

—— Native 1 CPU/Node

4 5
Node Count

26

Conclusions

* PVFS2 over OpenlB can be used to deliver
I/O to a single node and a single process at
rates that significantly exceed the
performance of locally attached disk
subsystems typically used in clusters.

* This setup offers the possibility of using
Inexpensive storage servers to provide very
fast I/O to high-end compute servers.

27

— e — i .

